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Introduction

• In this topic, we will

– Discuss evaluating a least-squares best-fitting polynomial 
at a point

– Describe how to find the coefficients of that polynomial

– Look at the change in run time

• We’ll reduce the run time to O(1)!

– Observing the differences between linear and quadratic 
interpolating polynomials
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Review

• From the main discussion:

– Suppose we have found a least-squares best-fitting linear 
polynomial passing through a set of given noisy points

• We can thus evaluate the linear polynomial at any point on 
the line
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Review

• Problem:

– Finding the least-squares best-fitting polynomial requires 
first calculating and then solving these systems of linear 
equations
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Do not memorize these square
matrices or the target vector 
- Understand they are the result

of calculating ATA and ATy



Equally spaced samples

• Fortunately, recall that data tends to be read periodically

– Let us use the previous practice of shifting and scaling
>> A = vander( -4:0, 2 );

>> cond( A )

ans = 4.738720018687270

>> inv( A'*A )*A'

ans =

-0.2  -0.1   0     0.1   0.2

-0.2   0.0   0.2   0.4   0.6
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Equally spaced samples

• Thus, we have that

– More simply, we have that
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Equally spaced samples

• If the data is noisy, yn is not even a good approximation of the 
current value y(tn)

– Instead, evaluate the least-squares linear polynomial at t = 0

y(tn) is best approximated by a0
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Equally spaced samples

• We can also estimate the value in the future or around tn
– Extrapolate one step into the future by evaluating the least-

squares linear polynomial at t = 1

y(tn + h) is best approximated by a0 + a1

– More generally, we can estimate the value at tn + d h by 
evaluating the least-squares linear polynomial at t = d 

y(tn + d h) is best approximated by a0 + d a1
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Equally spaced samples

• Our example uses five points

– We could choose fewer or more points to find a least-squares line

– In all cases, a0 and a1 are linear combinations of the y values
>> A = vander( -9:0, 2 );   # Ten points

>> inv( A'*A )*A'

ans =
-0.054545 -0.042424 -0.030303 -0.018182  -0.0060606 0.0060606 0.018182 0.030303 0.042424 0.054545

-0.14545  -0.090909 -0.036364  0.018182   0.072727  0.12727   0.18182   0.23636 0.29091  0.34545

– Having found a0 and a1,
our estimators of y(tn), y(tn + h) and y(tn + d h) remain unchanged
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Equally spaced samples

• Note that because these are integer matrices,
we can use some of the properties

>> A = vander( -9:0, 2 );   # Ten points

>> detAtA = round( det( A'*A ) )

detA = 825

>> round( detAtA*inv( A'*A )*A' )

ans =

-45   -35   -25   -15    -5     5    15    25    35    45

-120   -75   -30    15    60   105   150   195   240   285

>> ans/detAtA

ans =
-0.054545 -0.042424 -0.030303 -0.018182  -0.0060606 0.0060606 0.018182 0.030303 0.042424 0.054545

-0.14545  -0.090909 -0.036364  0.018182   0.072727  0.12727   0.18182   0.23636 0.29091  0.34545
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• Consider this data from a system that is clearly accelerating

– Using a least-squares linear polynomial would be wrong

– We should use a least-squares quadratic
polynomial

Linear or quadratic least-squares
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Equally spaced samples

• We can do the same for a least-squares quadratic:
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Equally spaced samples

• We can do the same for a least-squares quadratic:

– More simply, we have that
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Equally spaced samples

• As before, our best approximation of the actual current value is 
evaluating this least-squares quadratic at t = 0

y(tn) is best approximated by a0
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Equally spaced samples

• We can also estimate the value in the future or around tn
– Extrapolate one step into the future by evaluating the least-

squares quadratic polynomial at t = 1

y(tn + h) is best approximated by a0 + a1 + a2

– We also estimate the value at tn + d h by evaluating the least-
squares quadratic polynomial at t = d 

y(tn + d h) is best approximated by a0 + d a1 + d a2
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O(1) run time?

• Issue:

– This is still a single O(n) calculation with each step

– You may note that there is a particular pattern

– With the next step, the coefficients are now

– Let                                             , and so we update
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Summary

• Following this topic, you now

– Understand that we can easily find formulas for least-squares best-

fitting polynomials if the t-values are equally spaced

– Are aware that with the integer matrices we defined,
it is reasonable to calculate (ATA)–1AT

– Understand that this allows us to find least-squares best-fitting 
polynomial coefficients very quickly

– Know that we can use these coefficients to estimate the value of 
the function around the current time tn

– Are aware that we can even do this constant run time
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Colophon 

These slides were prepared using the Cambria typeface. Mathematical equations 
use Times New Roman, and source code is presented using Consolas.  
Mathematical equations are prepared in MathType by Design Science, Inc.

Examples may be formulated and checked using Maple by Maplesoft, Inc.

The photographs of flowers and a monarch butter appearing on the title slide and 
accenting the top of each other slide were taken at the Royal Botanical Gardens in 
October of 2017 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.
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Disclaimer

These slides are provided for the ECE 204 Numerical methods
course taught at the University of Waterloo. The material in it
reflects the author’s best judgment in light of the information
available to them at the time of preparation. Any reliance on these
course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility
for damages, if any, suffered by any party as a result of decisions
made or actions based on these course slides for any other purpose
than that for which it was intended.
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