ECE 204 Numerical methods

Approximating a point using least-squares best-fitting polynomials

Douglas Wilhelm Harder, LEL, M.Math. dwharder@uwaterloo.ca dwharder@gmail.com

Introduction

- In this topic, we will
- Discuss evaluating a least-squares best-fitting polynomial at a point
- Describe how to find the coefficients of that polynomial
- Look at the change in run time
- We'll reduce the run time to $\mathrm{O}(1)$!
- Observing the differences between linear and quadratic interpolating polynomials

Review

- From the main discussion:
- Suppose we have found a least-squares best-fitting linear polynomial passing through a set of given noisy points
- We can thus evaluate the linear polynomial at any point on the line

Review

- Problem:
- Finding the least-squares best-fitting polynomial requires first calculating and then solving these systems of linear

$$
\begin{aligned}
& \text { equations } \\
& \left(\begin{array}{l}
\sum_{k=1}^{n} t_{k}^{2} \\
\sum_{k=1}^{n} \sum_{k=1}^{n} t_{k} \\
\sum_{k}
\end{array}\right)\binom{a_{1}}{a_{0}}=\binom{\sum_{k=1}^{n} t_{k} y_{k}}{\sum_{k=1}^{n} y_{k}} \quad\left(\begin{array}{ll}
\sum_{k=1}^{n} t_{k}^{4} & \sum_{k=1}^{n} t_{k}^{3} \\
\sum_{k=1}^{n} t_{k}^{2} \\
\sum_{k=1}^{n} t_{k}^{3} & \sum_{k=1}^{n} t_{k}^{2} \\
\left(\sum_{k=1}^{n} t_{k}\right. \\
\sum_{k=1}^{n} t_{k}^{2} & \sum_{k=1}^{n} t_{k} \\
n
\end{array}\right)\left(\begin{array}{c}
a_{2} \\
a_{1} \\
a_{0}
\end{array}\right)=\binom{\sum_{k=1}^{n} t_{k}^{2} y_{k}}{y_{3}}=\binom{\sum_{k=1}^{n} t_{k} y_{k}}{\sum_{k=1}^{n} y_{k}} \\
& a_{1} t+a_{0} \frac{y_{2}}{y_{1}} \bullet
\end{aligned}
$$

Do not memorize these square matrices or the target vector

- Understand they are the result of calculating $A^{\mathrm{T}} A$ and $A^{\mathrm{T}} \mathbf{y}$

Equally spaced samples

- Fortunately, recall that data tends to be read periodically
- Let us use the previous practice of shifting and scaling

Equally spaced samples

- Thus, we have that
Thus, we have that
$\binom{a_{1}}{a_{0}}=\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}} \mathbf{y}=\left(\begin{array}{ccccc}-0.2 & -0.1 & 0 & 0.1 & 0.2 \\ -0.2 & 0 & 0.2 & 0.4 & 0.6\end{array}\right)\left(\begin{array}{l}y_{n-4} \\ y_{n-3} \\ y_{n-2} \\ y_{n-1} \\ y_{n}\end{array}\right)$
- More simply, we have that

$$
\begin{aligned}
& a_{1}=-0.2 y_{n-4}-0.1 y_{n-3}+0.1 y_{n-1}+0.2 y_{n} \\
& a_{0}=-0.2 y_{n-4}+0.2 y_{n-2}+0.4 y_{n-1}+0.6 y_{n}
\end{aligned}
$$

Equally spaced samples

- If the data is noisy, y_{n} is not even a good approximation of the current value $y\left(t_{n}\right)$
- Instead, evaluate the least-squares linear polynomial at $t=0$ $y\left(t_{n}\right)$ is best approximated by a_{0}

$$
-0.2 y_{n-4}+0.2 y_{n-2}+0.4 y_{n-1}+0.6 y_{n}
$$

Equally spaced samples

- We can also estimate the value in the future or around t_{n}
- Extrapolate one step into the future by evaluating the leastsquares linear polynomial at $t=1$
$y\left(t_{n}+h\right)$ is best approximated by $a_{0}+a_{1}$

$$
-0.4 y_{n-4}-0.1 y_{n-3}+0.2 y_{n-2}+0.5 y_{n-1}+0.8 y_{n}
$$

- More generally, we can estimate the value at $t_{n}+\delta h$ by evaluating the least-squares linear polynomial at $t=\delta$ $y\left(t_{n}+\delta h\right)$ is best approximated by $a_{0}+\delta a_{1}$

Equally spaced samples

- Our example uses five points
- We could choose fewer or more points to find a least-squares line
- In all cases, a_{0} and a_{1} are linear combinations of the y values
>> $\mathrm{A}=\operatorname{vander(~-9:0,~} 2$); \# Ten points
>> $\operatorname{inv}\left(A^{\prime *} A\right) A^{\prime}$
ans =

| -0.054545 | -0.042424 | -0.030303 | -0.018182 | -0.0060606 | 0.0060606 | 0.018182 | 0.030303 | 0.042424 | 0.054545 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| -0.14545 | -0.090909 | -0.036364 | 0.018182 | 0.072727 | 0.12727 | 0.18182 | 0.23636 | 0.29091 | 0.34545 |

- Having found a_{0} and a_{1},
our estimators of $y\left(t_{n}\right), y\left(t_{n}+h\right)$ and $y\left(t_{n}+\delta h\right)$ remain unchanged

Equally spaced samples

- Note that because these are integer matrices, we can use some of the properties

```
>> A = vander( -9:0, 2 ); # Ten points
>> detAtA = round( det( A'*A ) )
    detA = 825
>> round( detAtA*inv( A'*A )*A' )
    ans =
\begin{tabular}{rrrrrrrrrr}
-45 & -35 & -25 & -15 & -5 & 5 & 15 & 25 & 35 & 45 \\
-120 & -75 & -30 & 15 & 60 & 105 & 150 & 195 & 240 & 285
\end{tabular}
```

>> ans/detAtA
ans =
$-0.054545-0.042424-0.030303-0.018182-0.00606060 .00606060 .0181820 .0303030 .0424240 .054545$
$\begin{array}{lllllllllllllllllllll}-0.14545 & -0.090909-0.036364 & 0.018182 & 0.072727 & 0.12727 & 0.18182 & 0.23636 & 0.29091 & 0.34545\end{array}$

Linear or quadratic least-squares

- Consider this data from a system that is clearly accelerating
- Using a least-squares linear polynomial would be wrong
- We should use a least-squares quadratic polynomial

Approximating a point using least-squares best-fitting polynomials
Equally spaced samples

- We can do the same for a least-squares quadratic:

Approximating a point using least-squares best-fitting polynomials

Equally spaced samples

- We can do the same for a least-squares quadratic:

$$
\begin{aligned}
\left(\begin{array}{l}
a_{2} \\
a_{1} \\
a_{0}
\end{array}\right)= & \frac{1}{\operatorname{det}\left(A^{\mathrm{T}} A\right)}\left(\operatorname{det}\left(A^{\mathrm{T}} A\right)\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}\right) \mathbf{y}=\frac{1}{700}\left(\begin{array}{rrrrr}
100 & -50 & -100 & -50 & 100 \\
260 & -270 & -400 & -130 & 540 \\
60 & -100 & -60 & 180 & 620
\end{array}\right)\left(\begin{array}{l}
y_{n-4} \\
y_{n-3} \\
y_{n-2} \\
y_{n-1} \\
y_{n}
\end{array}\right) \\
& - \text { More simply, we have that }
\end{aligned}
$$

$$
a_{2}=\frac{1}{7} y_{n-4}-\frac{1}{14} y_{n-3}-\frac{1}{7} y_{n-2}-\frac{1}{14} y_{n-1}+\frac{1}{7} y_{n}
$$

$$
a_{1}=\frac{13}{35} y_{n-4}-\frac{27}{70} y_{n-3}-\frac{4}{7} y_{n-2}-\frac{13}{70} y_{n-1}+\frac{27}{35} y_{n}
$$

$$
a_{0}=\frac{3}{35} y_{n-4}-\frac{1}{7} y_{n-3}-\frac{3}{35} y_{n-2}+\frac{9}{35} y_{n-1}+\frac{31}{35} y_{n}
$$

\[

\]

Equally spaced samples

- As before, our best approximation of the actual current value is evaluating this least-squares quadratic at $t=0$
$y\left(t_{n}\right)$ is best approximated by a_{0}

$$
\frac{3}{35} y_{n-4}-\frac{1}{7} y_{n-3}-\frac{3}{35} y_{n-2}+\frac{9}{35} y_{n-1}+\frac{31}{35} y_{n}
$$

Equally spaced samples

- We can also estimate the value in the future or around t_{n}
- Extrapolate one step into the future by evaluating the leastsquares quadratic polynomial at $t=1$
$y\left(t_{n}+h\right)$ is best approximated by $a_{0}+a_{1}+a_{2}$

$$
0.6 y_{n-4}-0.6 y_{n-3}-0.8 y_{n-2}+1.8 y_{n}
$$

- We also estimate the value at $t_{n}+\delta h$ by evaluating the least-

$$
\begin{aligned}
& \text { squares quadratic polynomial at } t=\delta \\
& y\left(t_{n}+\delta h\right) \text { is best approximated by } a_{0}+\delta\left(a_{1}+\delta a_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \delta \leftarrow \frac{t-t_{n}}{h}
\end{aligned}
$$

$\mathrm{O}(1)$ run time?

- Issue:
- This is still a single $O(n)$ calculation with each step
- You may note that there is a particular pattern

$$
\begin{aligned}
& a_{1}=-0.2 y_{n-4}-0.1 y_{n-3}+0.1 y_{n-1}+0.2 y_{n} \\
& a_{0}=-0.2 y_{n-4}+0.2 y_{n-2}+0.4 y_{n-1}+0.6 y_{n}
\end{aligned}
$$

- With the next step, the coefficients are now

$$
\begin{aligned}
& a_{1}=-0.2 y_{n-3}-0.1 y_{n-2}+0.1 y_{n}+0.2 y_{n+1} \\
& a_{0}=-0.2 y_{n-3}+0.2 y_{n-1}+0.4 y_{n}+0.6 y_{n+1}
\end{aligned}
$$

- Let $s \leftarrow y_{n-3}+y_{n-2}+y_{n-1}+y_{n}$, and so we update

$$
\begin{aligned}
a_{1} & \leftarrow a_{1}+0.2 y_{n-4}-0.1 s+0.2 y_{n+1} \\
a_{0} & \leftarrow a_{0}+0.2 y_{n-4}-0.2 s+0.6 y_{n+1} \\
s & \leftarrow s-y_{n-3}+y_{n+1}
\end{aligned}
$$

Summary

- Following this topic, you now
- Understand that we can easily find formulas for least-squares bestfitting polynomials if the t-values are equally spaced
- Are aware that with the integer matrices we defined, it is reasonable to calculate $\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}$
- Understand that this allows us to find least-squares best-fitting polynomial coefficients very quickly
- Know that we can use these coefficients to estimate the value of the function around the current time t_{n}
- Are aware that we can even do this constant run time

References

[1] https://en.wikipedia.org/wiki/Least_squares

Acknowledgments

None so far.

Colophon

These slides were prepared using the Cambria typeface. Mathematical equations use Times New Roman, and source code is presented using Consolas. Mathematical equations are prepared in MathType by Design Science, Inc.
Examples may be formulated and checked using Maple by Maplesoft, Inc.
The photographs of flowers and a monarch butter appearing on the title slide and accenting the top of each other slide were taken at the Royal Botanical Gardens in October of 2017 by Douglas Wilhelm Harder. Please see https://www.rbg.ca/
for more information.

Disclaimer

These slides are provided for the ECE 204 Numerical methods course taught at the University of Waterloo. The material in it reflects the author's best judgment in light of the information available to them at the time of preparation. Any reliance on these course slides by any party for any other purpose are the responsibility of such parties. The authors accept no responsibility for damages, if any, suffered by any party as a result of decisions made or actions based on these course slides for any other purpose than that for which it was intended.

